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We study a multiple invasion model to simulate corrosion or intrusion processes. Estimated values for the
fractal dimension of the invaded region reveal that the critical exponents vary as a function of the generation
numberG, i.e., with the number of times the invasion process takes place. The averaged massM of the invaded
region decreases with a power law as a function ofG, M ,Gb, where the exponentb<0.6. We also find that
the fractal dimension of the invaded cluster changes fromd1=1.887±0.002 tods=1.217±0.005. This result
confirms that the multiple invasion processsfor the case in which uninvaded regions are forbiddend follows a
continuous transition from one universality classsnontrapping invasion percolationd to anothersoptimal pathd.
In addition, we report extensive numerical simulations that indicate that the mass distribution of avalanches
PsS,Ld has a power-law behavior and we find that the exponentt governing the power-lawPsS,Ld,S−t

changes continuously as a function of the parameterG. We propose a scaling law for the mass distribution of
avalanches for different number of generationsG.
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I. INTRODUCTION

The veins of gems and ores are often the product of a
multiple intrusion of a reacting fluid into a porous soil in
which dissolution and subsequent recrystallization processes
are the determining factor. Some examples like porphyry
copper depositsf1g or olivine f2g have been studied in the
literature and it is known that the surviving network of ore
deposits has a fractal structuref3,4g that can be considered
for mineral explorationf5g. A similar situation can be found
in vulcanology when magma is repeatedly injected through
the same pathway, each time melting up again the most re-
cent formations to find its way outf6g.

The evolution of the pore structure after several invasion-
frost-thaw events has been investigated numericallyf7g, and
results indicate that the fractal dimension of invasion clusters
varies with the number of invasion cycles. In this work, after
invasion takes place, the structure of the porous pathway is
randomly healed. In a similar approachf8g, an optimized
version of the multiple invasion percolation model was stud-
ied. Some topological aspects as the acceptance profile and
the coordination number were investigated and compared to
those of ordinary invasion percolation.

In the cases mentioned abovef1–5g and also in other
cases of repeated invasions of corroding, dissolving, or melt-
ing fluids into a strongly heterogeneous substrate, slowly
consolidating matrix fractal patterns are created that reflect
the history of the material. It is the aim of this paper to
develop a model of multiple invasion in order to simulate
how these patterns form and how their fractal dimension
changes. In fact, we propose a complete theoretical frame-
work based on scaling lawsf6g.

The basis mechanism behind the multiple invasion pro-
cesses in rock evolution is the following: A first invasion
takes place within a geologically speaking very short time
and leaves behind a certain damaged regionswhich typically
has a fractal shaped. Then during a long period nothing dra-
matic happens so that, e.g., crystallization or diverse chemi-

cal processes can take place. In this way slowly the material
is again strengthened partly repairing the damaged region.
Then suddenly due to some tectonic mechanism like an
earthquake or volcanic activity again an invasion takes place.
It will favorably follow along the weakest regions of the
solid which typically will be along previously damaged re-
gions. The interest in the problem is to understand to which
degree this reinvasion will either fully or only partially co-
incide with the first one. The process of reinvasion can be
repeated many times and only the final product is observed at
the end like the scars of many wounds on the skin of an old
animal.

The theory of avalanche dynamics has been studied in a
variety of contexts, for example in growth models, interface
depinning, and invasion percolationf9g. The formation of
fractal structures, diffusion with anomalous Hurst exponents,
and Lévy flights, can all be related to the same underlying
avalanche dynamicsf9g. Normally, the presence of ava-
lanches in the invasion process supposes unchanged porous
media. In this work we also investigate the mass-distribution
of avalanches and determine how the exponent that charac-
terizes this distribution changes for different cycles of the
invasion process. This paper is organized as follows. In Sec.
II we present the model and simulate the multiple invasion in
consolidating medium for the case in which uninvaded re-
gions are forbidden. In Sec. III we show the results for the
invaded cluster mass. The results and analysis of the numeri-
cal simulation for avalanche distribution are shown in Sec.
IV. In Sec. V we present simulation results of the multiple
invasion model for the case where the noninvaded regions
are not completely forbidden, while the conclusions are pre-
sented in Sec. VI.

II. MODEL

In order to simulate the injection process we use the stan-
dard nontrapping invasion percolationsNTIPd f10g. In this
model the invaded solid is considered to be very heteroge-
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neous and the invading fluid can potentially enter anywhere
along the interface. Here the consolidating medium is repre-
sented conveniently as a square network. The sites of the
lattice can be viewed as the smallest units of constant
strength and the randomness of the strength of the medium is
incorporated by assigning random numbers to sites. For sim-
plicity, we consider the case in which dissolutions control the
fluid invasion.

On our heterogeneous medium we start by applying the
standard invasion process of NTIP. For completeness the al-
gorithm is described as follows. Initially, let us assign a ran-
dom number,pi drawn from a uniform distribution in the
interval f0,1g, to each sitei of the lattice. We choose one site
in the center of the lattice and occupy it. This site represents
the injection point of the fluid and is the seed of the invading
cluster. We look among the neighboring sites of this cluster
sthe growth sitesd and choose the one which carries the
smallest random number. This site is then invaded and added
to the cluster. Then we increase the list of sites that are
eligible to be invaded. At each step of the invasion process,
the perimeter of the nearest neighbors of the sites that form
the invading cluster is investigated and the site that has the
smallestpi is chosen. This procedure is repeated until the
edge of the lattice is reached. At this point the simulation
stops and the massM si.e., the number of sites belonging to
the invaded clusterd of the cluster is computed. The number
of sites of the invaded cluster is very often considered as a
time parameter.

Now we present the new feature introduced to the stan-
dard invasion percolation. After we finish the above de-
scribed simulation in agreement with customary NTIP, the
simulation is performed again starting every time at the same
injection point. New random numbers chosen from a uniform
distribution in the intervalf0,1g are assigned to all sites be-
longing to the previously invaded cluster before a new inva-
sion process starts. To all other sites, i.e., namely, those that
are outside the cluster, we assign a random number homoge-
neously distributed in the intervalfp* ,1g wherep* is a num-
ber close to unity. Compared to the support used in the first
generation where all sites can be invaded, the second genera-
tion appears substantially reduced, because it mostly corre-
sponds to the cluster invaded in the first generation. In this
way we generate again an invasion cluster for whichp* =1 is
a subset of the previous one and so necessarily smaller. This
procedure is repeatedG times, whereG is the number of
generations. Standard invasion percolation coincides with the
caseG=1. At each new generationG, the sites of the previ-
ous invasion are reinvaded.

Let us first consider the casep* =1. In this situation, the
invaded cluster is after each time a subset of the previous one
so that after a finite number of iterations the cluster does not
decrease any longer. The number of generations needed to
reach a cluster whose mass remains unchanged depends on
the size of the original lattice because the number of possible
available sites is proportional to the system size. Therefore
the saturation number is different for each lattice size. In
order to illustrate these changes in the structure after each
process of invasion, we show in Fig. 1 typical clusters gen-
erated for a lattice of sizeL=256 for four different genera-
tions G. Another important quantity is the probability distri-
bution of pi of the invaded sites. In Fig. 2 we present the
normalized distributionPinvspd for different generationsG
obtained from 1000 realizations of sizeL=512. After the
completion of the first invasion process, the distribution ex-
pectedly displays a transition atp<pc, wherepc is the criti-
cal site percolation point,pc=0.59275 for a square lattice
f11g. The same behavior has been observed by numerical
simulation in Refs.f7,8g. For G=2 the distributionPinvspd
becomes flat and the profile does not change any more as a
function of G. This happens because whenG.1 sites with
largerpi are also invaded.

III. CLUSTER MASS

In our simulations we used the NTIP algorithm for square
lattices of sizesL=64, 128, 256, 512, and 1024. For each

FIG. 1. Typical cluster for different generations on a 2563256 lattice, forp* =1. The injection point is localized in the center of the
lattice.

FIG. 2. The probability distributionPinvspd of invaded sites for
different generationsG=1 scirclesd, 2 ssquaresd, and 16strianglesd,
L=512 andp* =1.
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value of G, we perform simulations for 10 000 realizations
and compute the massMG of the invaded cluster. In Fig. 3
we show the ratioMG/MG−1 as a function of the generation
numberG. For each sizeL, Gs is defined as the number of
generations at which the mass of the invaded cluster reaches
a constant value, i.e., for whichMGs

/MGs−1=1. The results
of our simulations shown in Fig. 4 for four values of the
generation numberG indicate that the massM has a power-
law dependence on the sizeL, M ,LdG, where dG is the
fractal dimension of the invaded cluster. The caseG=1 cor-
responds to the standard invasion percolation model. The
value obtained from our simulations,d1=1.887±0.002, is in
good agreement with the current estimated1=1.8959 for
NTIP f11–14g. The results shown in Fig. 4 indicate that by

increasing the generation number the fractal dimension de-
creases continuously until it reaches a saturation value of
ds=1.217±0.005 atGs. This value agrees with the fractal
dimension of the optimal path in the strong disorder limit
dopt=1.22±0.01f15g. As shown in Fig. 5 for large system
sizes we find that the average mass of the invaded cluster
asymptotically follows a power-law behavior

M , Gb. s1d

To better analyze the data, we normalize the mass by the
constantM1, which is the average mass of the invaded clus-

FIG. 6. The mass distribution of avalanches for different gen-
eration numbersG=2, 4, 8, 16, 32, 64, and 128 forL=512 and
p* =1. The slopes of the straight lines follow power laws with ex-
ponentt. The solid lines indicate the two limit casesG=1 slowerd
andG=128 supperd.

FIG. 3. The evolution of the rateMG/MG−1 as function of the
logarithm of the generation numberG for p* =1. HereMG is the
mass at generationG for different sizesL=64, 128, 256, and 512.

FIG. 4. Log-log plot of the massM of the invaded cluster versus
the system size for different generation numbersG=1 scirclesd, 100
ssquaresd, 500 sdiamondsd, and 3000strianglesd, and p* =1. The
straight lines are best fits to the data and their slopes are the fractal
dimensions of the invaded clusters.

FIG. 5. Log-log plot of the average mass of the invaded cluster
M normalized by the massM1 of the first invaded cluster, against
the number of generationsG for different sizesL=64, 128, 256,
512, and 1024, andp* =1. The inset shows the collapse following
the scaling relation of Eq.s2d.
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ter at G=1. Similar to some problems that involve growth
surfacesf16g, this process has two characteristic regimes:sid
power-law evolution andsii d saturation whenG→`. To de-
scribe this behavior we propose the scaling relationf6g

MsG,Ld
M1

= LafSG − N0

Lz D , s2d

whereN0 is an offset value for the generation number anda
and z are scaling exponents. We assume that the scaling
function fsxd has the formfsxd,xb in the limit x!1 and
fsxd=const whenx@1. Furthermore, a direct relation among
exponentsa, b, and z can be obtained. We findM /M1
,Gb for L@1 and, sinceM /M1,La in the saturation re-
gime sG@1d, we obtain thata=ds−d1.

In the crossover region, when the fractal dimension goes
from d1 sG=1d to ds sG=Gsd we have

sG − N0d , Lz. s3d

From these relations, we obtain that

z=
a

b
, s4d

and from the fact that the fractal dimension has reached the
saturation valueds<1.22, it givesa=−0.68. The inset of
Fig. 5 shows the data collapse obtained by rescalingM /M1
andG according to the scaling form Eq.s2d. In this case the
best fit to the data givesb<0.6. Substituting into Eq.s4d we
find z=1.13.

IV. AVALANCHE DISTRIBUTION

It has been known for a long time that avalanches occur in
invasion percolation and that these avalanches obey scaling
relations related to percolation theoryf17g. An avalanche oc-
curs when a sitej is invaded at a valuepj and then a series of
sitesi connected to this original site are sequentially invaded
with pi ,pj. It is also known that the system reaches a self-
organized critical state characterized by avalanches of all
sizes distributed according to a power law. In the case of
NTIP, the exponent corresponding to the power-law behavior
for the distribution PsSd of avalanche sizesS is t
=1.527f17g.

In our simulation we found that the exponent correspond-
ing to the caseG=1 is t=1.46±0.03. The expected value
f17g is outside of our error bars, which we attribute to the
fact that we have not reached the asymptotic limit because
our systems are too small.

We performed simulations for different generationsG on
lattices of sizesL=64, 128, 256, 512, and 1024, and calcu-
lated the size distribution of avalanches. In Fig. 6 we show
PsSd for sizeL=512 andG=2, 4, 8, 16, 32, 64, and 128. It is
clear from this figure thatPsSd displays power-law behavior
with the exponent dependent of the number of generationsG.
The solid lines indicate the slopes in the two limit casesG
=1 slowerd andG=128 supperd.

FIG. 7. Log-linear plot of the avalanche exponentt as a func-
tion of the generation numberG, for L=512 andp* =1.

FIG. 8. Log-log plot of the probability distribution of avalanchesPsS,Ld for various sizesL=64, 128, 256, 512, and 1024,p* =1. sad G=2
and sbd G=128.
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In Fig. 7 we show how the exponent of the power-lawt
changes as a function of the number of generationsG. For
large values ofG the exponent converges tot=1. This value
is the same found for the distribution of avalanchesPsSd in
the one-dimensional casef18g. This is consistent with Fig. 1
for G=100 where the avalanche process is limited to a thin
path that is essentially an one-dimensional topology.

In Figs. 8sad and 8sbd we show the log-log plot of the
distribution of avalanche sizes. It is clear from these figures
that PsSd displays a scaling region for intermediate ava-
lanche sizes. In addition the scaling region is followed by a

sudden cutoff that decays faster than exponential due to a
finite size effect. The range of the power-law region is pro-
portional to the lattice size. As a consequence the biggest
avalanches occur in the largest lattice. The position of the
cutoff depends onG for fixed L. We propose a scaling form
for the mass distributionPsL ,Sd, which accounts for finite
size effects and power-law behaviorf19g

PsS,Ld ~ S−tfS S

LgD , s5d

where the functionfsxd has a Gaussian form

fsxd = expf− x2g. s6d

In practice, the appropriate parameters of the scaling func-
tion Eq. s5d have been determined here through a nonlinear
fitting procedure of the function

FIG. 9. Log-log plot of the distributionPsSd for p* =1 and gen-
eration numberG=2 for L=1024 scirclesd, 512 ssquaresd, 256 sup
trianglesd, 128sdiamondsd, and 64sdown trianglesd. The solid lines
correspond to the scaling functiony=A0S

−t expf−sS/A1d2g with the
parametert=1.37. The inset shows the log-log plot of the crossover
amplitude A1 versus the system sizeL for G=2 scirclesd, 32
ssquaresd, 128 sdiamondsd, and 256strianglesd. The lines are the
least-squares fits to the data and the slope isg.

FIG. 10. Log-linear plot of the exponentg vs the generation
numberG. p* =1.

FIG. 11. Log-log plot of the rescaled distribution of avalanches
sizes PsS/Lgd for generation numberG=16 and different lattice
sizesL=64, 128, 256, 512, and 1204 andp* =1.

FIG. 12. Linear-log plot of the invaded mass for a typical real-
ization as function of the generation numberG, for L=512. From
top to bottom,p* =0.9,0.9999,0.999999.
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PsS,Ld = A0S
−t expf− sS/A1d2g s7d

to the avalanche data. We observe that both the prefactorA0
and the crossover amplitudeA1 depend on the system size.

The solid line in Fig. 9 corresponds to the best fit using
Eq. s7d for G=2 and many different sizesL with t=1.37.
The inset of Fig. 9 shows the power-law dependence of
crossover amplitude on the system size,A1~Lg. The straight
lines are the least-squares fits to the data, with the slopes
corresponding to the exponentg in Eq. s5d for different gen-
eration numbers.

In Fig. 10 we plot the exponentg versusG, and see that
the exponent has a monotonic behavior as a function of the
generation number.

In Fig. 11 we show the rescaled functionPsS/Lgd for G
=16. The data collapse obtained validates the scaling form of
Eq. s7d. This confirms that the system is self-organized criti-
cal and the rescaled distribution shows the asymptotic scal-
ing behavior of Eq.s7d.

V. RESULTS FOR p* Å1

In the first part of this work we consideredp* =1. Now we
present simulations for differentp* very close to unity. In
Fig. 12 we show how the mass of the invaded cluster varies
as a function of the generation numberG for a typical real-
ization of the multiple invasion process. In the casep* =0.9
the value of the mass shows strong fluctuations. If the prob-
ability to occupy sites outside of the previously invaded clus-
ter is raised, the previous invaded region of the porous media
is more likely invaded. To understand the qualitative behav-
ior of the invaded cluster as a function of the generationG
we show in Figs. 13 and 14 typical clusters for two values
p* =0.9 andp* =0.999999, for five different generationsG
=1, 5, 10, 25, and 50. Forp* =0.9, the cluster is more com-

pact and sometimes changes the point where it reaches the
border. Whenp* =0.999999, the cluster becomes smaller at
each generation.

In order to be more quantitative we calculate the fractal
dimensiondf. We measure the mass of the invaded cluster
for different generationsG for two different probabilities
p* =0.9 and 0.999999. Numerical simulations were carried
out for 1000 realizations on lattice sizesL=64, 128, 256, and
512. In Figs. 15 and 16 we present log-log plots of the av-
eraged mass of the invaded cluster versus the lattice sizeL.
The linear fit to the data yields the fractal dimensiondf of the
invaded cluster. In the casep* =0.9, the fractal dimension is
df =1.90±0.01 for all generations. Forp* =0.999999 the frac-
tal dimension decreases whenG increases. This implies that
the fractal dimension of the invaded cluster has a behavior
similar to the previously studied case in whichp* =1.

VI. CONCLUSIONS

We have presented a comprehensive model to study a
multiple invasion process. We have shown that the massMG
of the invaded cluster decreases with the generation number
G. In addition, the fractal dimension of the invaded cluster
changes fromd1=1.887±0.002 tods=1.217±0.005 corre-
sponding toG=1 andG=Gs, respectively. This result con-
firms that the multiple invasion process follows a continuous
transition from one universality classsNTIPd to anothersop-
timal pathd. We confirmed by extensive simulations that the
invaded mass follows a power-lawM ,Gb with an exponent
b<0.6. In addition the probability distribution of avalanches
PsS,L ,Gd has been studied for different system sizes as a
function of the parameterG. We found that the mass distri-
bution of avalanches follows a power law where the expo-
nent t changes as a function of the generation numberG.
Based on this fact, we suggest that the avalanche process

FIG. 13. Typical configurations of invaded clusters at different generationsG and L=256. The random numberpi is drawn from a
uniform distribution of probabilities in the intervalfp* ,1g for p* =0.9.

FIG. 14. Typical cluster configurations for invaded clusters at different generationsG andL=256. The random numberpi is drawn from
a uniform distribution of probabilities in the intervalfp* ,1g for p* =0.999999.
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belongs to a differentuniversality classfor eachG since no
crossover scaling seems possible. Our results also indicate
that this change in universality class occurs in a continuous
way. Concerning the reinvasion of crystallizing, solidifying,
or healing fluids we conclude that only in the case in which
the noninvaded part is not substantially damaged and the
healed parts typically do not get much stronger than they
were before the invasion, the multiple invasion process con-

verges well to a different universality class, namely, that of
the optimal pathf13g. In the opposite case corresponding to
p* Þ1, the classical invasion percolation holds for all genera-
tions.
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FIG. 15. Log-log plot of the averaged massM as a function of
the system sizeL for p* =0.9 andG=5 scirclesd, 10 ssquaresd, and
50 sdiamondsd. The solid line with slope 1.90±0.01 is the least-
squares fit to all data sets.

FIG. 16. Log-log plot of the averaged massM against the sys-
tem sizeL for p* =0.999999 andG=5 scirclesd, 10 ssquaresd, and 50
sdiamondsd. The straight lines are least-squares fits to the data, with
the numbers corresponding to the fractal dimensions of the clusters.
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